Minimally Invasive Vitreoretinal Surgery (25G, 27G) with High-speed Vitrectomy Cutter – Case Series

Krzysztof Broniarek, Katarzyna Michalska-Malecka

Department of Ophthalmology Medical University of Gdańsk
Head: Professor Katarzyna Michalska-Malecka, MD, PhD

Introduction

On July 20, 1970, Robert Machemer and his team conducted the first pars plana vitrectomy (PPV) using 17 G (1.42 mm) diameter tools. Further development of this technology was made by O’Malley and Heintz, who in 1974 created the three-port 20G (0.9 mm) vitrectomy. This was achieved by separating the cutting part, infusion and illumination, originally combined in one tool. The era of small incision surgery was initiated by Eugen de Juan in 1990 by proposing the use of 25G (0.5 mm) PPV vitrectomy [1]. The development of this technology was significantly hindered by insufficient illumination of the surgical field, significant flexibility of the tools used, and their limited availability. Gradual improvement in the parameters of the tools used allowed for the development of transconjunctival, sutureless systems – 23G (0.65 mm) and 25G [2]. Claus Eckardt played a significant role in popularizing the first, utilizing the advantages of both 20G and 25G systems [3]. The smallest currently used system is 27G (0.4 mm), introduced for the first time by Oshima and colleagues in 2010 [4]. Tools from 23G, 25G, and 27G systems are used for minimally invasive vitrectomy techniques (MIVS).

The introduction of new minimally invasive systems was associated with concerns about a higher risk of postoperative complications such as hypotonia or endophthalmitis [5]. The preferred cutting technique turned out to be the use of tunnel sclerotomies, involving the creation of oblique, layered incisions. This technique allowed self-sealing of the wound. Inspection of each port after surgery and active search for leakage is considered as another safety measure.

Among the basic tools used during vitrectomy are: trocars, fiber optic, microforceps, microscissors infusion cannula, laser probe, flute needle, diathermy, and vitrector. In order to gain access to the vitreous body and retina, a cutting knife and trocar are used. Knives cause the formation of a linear sclerotomy, which, in the case of a smaller diameter of the tools used, does not require the application of scleral sutures. The trocar is a type of cannula inserted into the incision, which allows for the safe introduction of instruments into the eye. The construction of trocars varies between manufacturers and solutions containing valves are often preferred. This technology ensures stabilization of the pressure in the vitreous body chamber, reducing the risk of complications, including suprachoroidal hemorrhage or collapse of the vitreous body. A certain difficulty in this technology may be the introduction of instruments with a soft tip, as in the case of a flute needle.

The fiber optic enables the propagation of light, allowing the visualization of the internal structures of the eyeball. Its sources are most often xenon, halogen lamps, and lamps based on light-emitting diode (LED) technology. The tools used allow for adjustment of the angle of incidence of light or its intensity. Manual endoillumination devices usually emit a narrower beam of light and require constant work by one of the operator’s hands. An alternative or additional source of light may be overhead lighting, which, when placed in one of the ports, illuminates a wide angle and allows for bimanual operation.

The microforceps is used for tissue dissection. There are many variants of this device covering different sizes, shapes, or angles of curvature. One of the applications may be, for example, peeling the retinal membrane from the surface of the retina.

Microscissors are used for tissue dissection and cutting. During horizontal cutting, they can be useful for delamination, and in the case of vertical cutting, for segmentation.

The infusion cannula placed in the vitreous chamber maintains constant pressure and allows safe exchange of fluids and gases during vitrectomy.

Abstract:

Introduction: The development of vitreoretinal surgery is inseparably linked to the gradual miniaturization and decreasing invasiveness of the procedure. The smallest available systems are 23G, 25G, and 27G, which are referred to as minimally invasive vitreoretinal surgery techniques. This paper presents the preoperative and postoperative results of three patients undergoing posterior vitrectomy using the 25G or 27G systems with the HIPERVIT probe (Alcon, USA). The effects were retrospectively analyzed in terms of changes in best corrected visual acuity, intracocular pressure, occurrence of complications, and changes in optical coherence tomography images of macular edema. Examinations were performed before and one day, two weeks, three months, and six months after vitrectomy. The potential benefits and drawbacks of using these systems in practice were analyzed.

Case report: The analysis concerns the results of the performed posterior vitrectomy procedure in patients with full-thickness macular hole, tractional retinal detachment due to diabetic retinopathy, and vitreomacular traction syndrome.

Conclusions: The performed procedures allowed for improvement in both anatomical and functional conditions of the macula. All analyzed patients showed an improvement in visual acuity. None of the analyzed patients required the use of scleral sutures. Serious complications were not observed during the surgery or during the 6-month observation period. 25G and 27G HIPERVIT vitrectomy can be successfully used in the discussed vitreoretinal diseases. In the discussed cases, it enabled the effective and safe performance of the procedure.

Key words: microincision vitreotomy surgery (MIVS), vitrectomy (PPV), ophthalmology, retina.
The flute needle in MIVS has a soft silicone tip, which improves the safety of work near the retina. Its mechanism is based on the gradient between the higher pressure inside the eyeball and the lower atmospheric pressure, which allows fluid aspiration.

The endolaser utilizes the photocoagulation effect, which involves converting light energy into thermal energy, causing controlled damage to the retina. Its effectiveness depends on the distance between the laser tip and the retina, power, working time or retinal pigmentation. The most commonly used lasers emit green light, absorbed by melanin and hemoglobin, less frequently infrared light, which penetrates deeper. Indications for use do not differ significantly from those for slit lamp lasers and include, among others, laser therapy for degenerations, holes, tears, detachments, proliferative diabetic retinopathy, or diabetic macular edema.

Diathermy is a technique used to stop bleeding, mark the boundaries of retinal holes or mark the edges of retinotomy. It can be uni- or bipolar, utilizing the action of an electric arc to induce the coagulation effect.

A key tool for the success of the procedure is the vitreous cutter (vitrector). This device simultaneously cuts and aspirates surrounding tissues, and removes pathological membranes, vitreous fragments, hemorrhagic masses, and membranes. According to Hubschmann et al., the ideal vitreous cutter should have the longest possible duty cycle, a large internal diameter, a sharp cutting edge, and the highest possible flow rate [6]. Other factors influencing flow rate include number of cuts, flexibility of the vitreous body, and the size of the vitrector tip opening. To increase flow, the diameter of the tools or the suction force can be increased. Unfortunately, increasing the second parameter may be associated with increased retinal traction by the aspirated vitreous body [7]. A potential solution to this problem in mechanical vitrectors may be to increase the speed of cuts, which allows the fragments of aspirated vitreous to be shortened, resulting in higher suction efficiency and flow rate [7]. Moreover, by moving the vitrector away from the retina, the operator can reduce the development of traction [8]. In pneumatic vitrectors, a negative correlation exists between the increase in the number of cuts and the flow rate. A longer cycle time may solve this limitation. In this study, a pneumatic vitrector was used, which cuts both during opening and closing of the guillotine, doubling the number of cuts. The analysis includes the results of three vitrectomy procedures using 25G or 27G Alcon (Alcon, USA) systems with a HIPERVIT probe (Alcon, USA). Pre- and postoperative results were analyzed retrospectively for changes in best corrected visual acuity (BCVA), intraocular pressure (IOP), occurrence of complications, and changes in optical coherence tomography (OCT) images of maculae. The study was performed before and one day, 2 weeks, 3 months, and 6 months after vitrectomy surgery.

Case description

The vitreectomy procedure involved three patients, as follows:

- **Patient 1.** – Full-thickness macular hole secondary to vitreoretinal traction;
- **Patient 2.** – Tractional macular detachment in the course of proliferative diabetic retinopathy;
- **Patient 3.** – Vitreomacular traction.

After obtaining informed consent from the patients, the procedure was performed under general anesthesia with the use of mydriatic drops – 1% tropicamide and 5% phenylephrine. After preparing a sterile field and disinfecting the conjunctival sac with a 5% povidone iodine solution, the vitrectomy was performed. In all patients, the procedure began with three tunnel sclerotomies at a distance of 3.5 mm from the corneal limbus in the upper nasal and upper and lower temporal quadrants. In the first case, the inverted flap technique was used. In the second patient, traction release and endolaser therapy were performed. In the case of the third patient, vitreomacular traction release was also performed. Endotamponade with SF6 gas 25% was applied. None of the patients required sutures for scleral wounds. After the vitrectomy procedure, eye drops containing 5 mg/1 ml levofloxacin and 1 mg/ml dexamethasone were applied four times daily for a period of two weeks.

The results of the best-corrected visual acuity and intraocular pressure are presented in Tables I and II. After temporary worsening on the first day after surgery, each of the analyzed patients experienced an improvement in visual acuity. None of the patients required the use of IOP-lowering drops. No intraoperative complications were observed. In the first day after vitrectomy, minor subconjunctival hemorrhages were observed near sclerotomies. On OCT:

- **Patient 1:** In the second week after vitrectomy, the presence of subretinal fluid and isolated intraretinal fluid spaces in the inner and outer nuclear layers was noted. By the third month after vitrectomy, these changes resolved;
- **Patient 2:** In the second week after vitrectomy, isolated intraretinal fluid spaces in the outer nuclear layer were observed. These changes persisted until the end of the observation period;
- **Patient 3:** In the second week after vitrectomy, isolated; intraretinal fluid spaces in the outer nuclear layer were observed. These changes persisted until the end of the observation period. Hyperreflective material in the subretinal space persisted throughout the entire observation period (Tab. II).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Diagnosis</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. – 25 G</td>
<td>FTMH, VMT</td>
<td>73</td>
<td>Woman</td>
</tr>
<tr>
<td>2. – 27 G</td>
<td>VMT, DME, PDR, RD</td>
<td>63</td>
<td>Man</td>
</tr>
<tr>
<td>3. – 25 G</td>
<td>VMT, AVMD</td>
<td>71</td>
<td>Woman</td>
</tr>
</tbody>
</table>

Table I. Full-thickness macular hole (FTMH), vitreomacular traction (VMT), retinal detachment (RD), proliferative diabetic retinopathy (PDR), adult vitelliform macular dystrophy (AVMD).

<table>
<thead>
<tr>
<th>Patient</th>
<th>BCVA before surgery</th>
<th>BCVA one week after surgery</th>
<th>BCVA 2 weeks after surgery</th>
<th>BCVA 3 months after surgery</th>
<th>BCVA 6 months after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. – 25 G</td>
<td>0.4 CF</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2. – 27 G</td>
<td>0.03 CF</td>
<td>0.1</td>
<td>0.2</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>3. – 25 G</td>
<td>0.32 CF</td>
<td>0.5</td>
<td>0.63</td>
<td>0.63</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Best corrected visual acuity. CF – counting fingers.

<table>
<thead>
<tr>
<th>Patient</th>
<th>IOP before surgery</th>
<th>IOP 1 day after surgery</th>
<th>IOP 2 weeks after surgery</th>
<th>IOP 3 months after surgery</th>
<th>IOP 6 months after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. – 25 G</td>
<td>10 mmHg</td>
<td>14 mmHg</td>
<td>15 mmHg</td>
<td>14 mmHg</td>
<td>12 mmHg</td>
</tr>
<tr>
<td>2. – 27 G</td>
<td>17 mmHg</td>
<td>19 mmHg</td>
<td>21 mmHg</td>
<td>21 mmHg</td>
<td>20 mmHg</td>
</tr>
<tr>
<td>3. – 25 G</td>
<td>13 mmHg</td>
<td>21 mmHg</td>
<td>18 mmHg</td>
<td>16 mmHg</td>
<td>16 mmHg</td>
</tr>
</tbody>
</table>

Table III. Intraocular pressure measurements.
Conclusions

The tested HYPERVIT vitrector is available in the 25G and 27G and was developed through gradual improvement of previous technologies used in the CONSTELLATION system. The previously used Advanced ULTRAVIT allowed 10,000 cuts/minute to be achieved. In the HIPERVIT system (Alcon, USA), this number has been doubled, reaching 20,000 cuts/minute. The dual-blade technology allowed the number of cuts to be doubled. Combined with the “slit” type of tip opening it reduces retinal traction and extends the duty cycle. Furthermore, it enables a constant flow with reduced fluidic turbulence [9]. Additional technologies were implemented in this system, such as placing the opening closer to the vitrectomy tip or using a bevelled tip, which allows safer work at a shorter port-to-surface distance. This is particularly impor-
Minimally Invasive Vitreoretinal Surgery (25G, 27G) with High-speed Vitrectomy Cutter – Case Series

ISSN 1505-2753 OPHTHALMOLOGY/OKULISTYKA 1/2024 (YEAR XXVII) P. 50-53

No serious intraoperative or postoperative complications were observed in any of the patients. Scientific studies have repeatedly confirmed the safety of MIVS systems [13, 14]. Early considerations regarding the higher risk of hypotony or endophthalmitis did not limit the spread of this technology [15]. However, the technique of creating ports, the learning curve of a given technique for the operator, postoperative antibiotic therapy, adherence to aseptic principles, and proper peripheral vitrectomy are all significant factors influencing the occurrence of these complications [16]. Authors such as Allen Chang et al. emphasize the impact of the chosen endotamponade on the risk of endophthalmitis as well [17].

There was no need for scleral suture placement after sclerotomy in any of the operated patients. The use of smaller sclerotomies reduces scleral trauma, which is associated with better patient comfort, lower postoperative astigmatism [18], a shorter procedure time and a shorter recovery period [5]. The use of the 27G system, compared to 25G, is associated with a lower rate of complications related to sclerotomy healing while maintaining similar anatomical and functional outcomes [19].

Initially, the flexibility of tools and lower flow values limited the use of MIVS. Increase in the number of cuts, improvement in flow parameters, and enhancement of tool stiffness changed it. Its potential applications in the treatment of diseases such as rhegmatogenous and tractional retinal detachments or PDR [20], have gradually expanded. In PDR treatment, precise removal of membranes and proliferations while working at short distances from the retina is particularly important, as observed in the cases discussed.

All operated patients experienced improvement in visual acuity and, as mentioned, no serious intraoperative and postoperative complications were observed. This fact may indicate effectiveness and safety of the performed procedures. The use of smaller sclerotomies obviated the need for postoperative scleral sutures, thereby mitigating the invasiveness of the procedure. In conclusion, despite certain technological limitations associated with the miniaturization of surgical tools, MIVS systems are constantly being improved, offering hope for the development of further solutions that combine precision and efficiency in the future.

Disclosure
Conflict of interests: none declared
Funding: no external funding
Ethics approval: Not applicable

References:

Contact and reprint request:
Krzysztof Broniarek, MD (e-mail: broniarekk@gmail.com)
Department of Ophthalmology
Medical University of Gdańsk
Mariana Smoluchowskiego 17, 80-001 Gdańsk

ISSN 1505-2753
OPHTHALMOLOGY/OKULISTYKA 1/2024 (YEAR XXVII) P. 50-53

53