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Summary:

Glaucoma is a serious, chronic, and progressive eye disease that can lead to irreversible blindness. The early phase of the condition is particularly critical, as it

often remains unnoticed by the patient. Glaucoma is a leading cause of vision loss worldwide, which underscores the importance of screening and continuous
monitoring of disease progression. Traditional diagnostic methods include intraocular pressure measurement, gonioscopy, fundus examination, optical
coherence tomography, and visual field testing. However, the subjective nature of result interpretation and the time-intensive character of procedures have
prompted growing interest in arfificial intelligence. In recent years, substantial advances in artificial intelligence applications have significantly improved
workflow and efficiency across various medical domains. The implementation of arfificial intelligence in glaucoma diagnostics may lead to considerable
improvements in ophthalmology by enabling earlier detection of individuals at risk, reducing the number of patients who lose their vision, and decreasing the
burden on physicians while improving the overall quality of patient care. This paper presents a review of literature published over the past decade, examining
the foundations of operation of artificial intelligence, the effectiveness of algorithms in identifying glaucomatous changes, and their capacity to assess disease
risk. The review incdudes an in-depth evaluation of the diagnostic potential and possible limitations of arfificial intelligence in diagnosing glaucoma.
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1. Introduction

Glaucoma is a heterogeneous group of diseases characterized
by progressive optic neuropathy. Based on gonioscopic examination,
glaucoma can be divided into open-angle and angle-closure types.
Ophthalmic examination makes it possible to determine whether
glaucoma is primary or secondary to another condition, and depen-
ding on the time of onset, it can be classified as congenital or acqu-
ired. In glaucoma, aqueous humor usually drains too slowly through
the trabecular meshwork due to increased outflow resistance or clo-
sure of the drainage angle. Primary open-angle glaucoma accounts
for the majority of glaucoma cases among the adult population, and
its risk factors include elevated intraocular pressure, age, sex, my-
opia, black race, and a positive family history [1].

Angle-closure glaucoma develops as a result of iridocorneal ap-
position and/ or apposition of the iris to the trabecular meshwork,
which leads to closure of the drainage angle, an increase in intraocular
pressure, and ultimately the development of glaucomatous neuropa-
thy. Angle closure may be primary, occurring in individuals with an
anatomical predisposition, or secondary, developing in the course of
other ocular diseases. Secondary glaucoma arises in association with
conditions such as diabetes, cataract, inflammatory disorders, neo-
plasms, or trauma. In its early stages, open-angle glaucoma is usually
asymptomatic. The disease leads to the gradual loss of retinal nerve
fibers, which may result in irreversible optic nerve damage.

Glaucoma is the main cause of irreversible blindness worldwi-
de, and its prevalence is estimated to increase to approximately
111.8 million cases by 2040 [2]. For this reason, early detection
of the disease is crucial, and the use of artificial intelligence (Al)
in glaucoma diagnosis and early-stage detection offers the poten-
tial for substantial advances in the care of those affected by this
condition.

(] L] o
2. Diagnostic tests used in glaucoma
Glaucoma diagnosis involves a range of examinations, inclu-
ding tonometry, i.e. measurement of intraocular pressure, which
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is considered the primary factor in glaucoma development and
the only modifiable risk factor for the onset and progression of the
disease. In applanation tonometry, pachymetry should also be per-
formed to assess central corneal thickness, which helps determine
whether the measurements are overestimated or underestimated.
Gonioscopic evaluation of the drainage angle at the time of dia-
gnosis can provide valuable insights into the disease’s pathogene-
sis. An important part of diagnostic work-up in glaucoma is the
evaluation of the fundus of the eye and the retinal nerve fiber lay-
er. Indirect ophthalmoscopy allows for the evaluation of the optic
disc and its parameters, enabling estimation of disease severity
and monitoring of progression over time [3]. It is a key diagnostic
method that facilitates the detection of structural changes in the
optic disc, which may occur before visual field defects become
apparent [4]. One approach to examining the fundus involves cap-
turing color images using specialized devices known as fundus ca-
meras. Another method is spectral optical coherence tomography
(SOCT), which enables the assessment of optic disc morphology,
the thickness of the retinal nerve fiber layer (RNFL), as well as the
thickness of retinal ganglion cells (GCL) and the entire ganglion
cell complex (GCC). While both techniques evaluate optic disc
morphology, they operate through distinct mechanisms. SOCT
provides precise numerical values and charts that allow for the as-
sessment of optic disc morphology and the thickness of the RNFL
in the peripapillary region. Based on these results, the device ge-
nerates a report (depending on the SOCT model), which helps
physicians identify changes associated with glaucoma. As a result,
SOCT is easier to interpret than color fundus photographs, which
require greater expertise and clinical experience [5]. In addition,
perimetry (visual field testing) should be performed to evaluate
the extent of functional impairment caused by the loss of optic
nerve fibers. It is important to obtain reliable test results, which
largely depends on patient cooperation. In this case, the learning
effect plays a role, and sometimes only the second or even third
examination is suitable for interpretation. Glaucoma diagnosis can
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be time-consuming and costly, and it relies heavily on the physicia-
n’s knowledge and skills, which makes it susceptible to error. The
introduction of Al into glaucoma diagnostics could eliminate the
element of subjectivity and help relieve the burden on physicians,
potentially improving the overall quality of patient care [6].

3. Fundamentals of artificial intelligence

Al-based automated models can help reduce diagnostic sub-
jectivity among doctors in glaucoma assessment. These systems
are able to analyze and accurately compare images of the retina
and optic nerve. By optimizing workflow organization in ophthal-
mology departments, Al enables doctors to devote more time to
patient interaction, thereby enhancing the overall quality of care.
Artificial intelligence is a term that encompasses various technolo-
gies and methods that enable machines to perform tasks typically
requiring human intelligence. Examples of Al applications include
image processing, which involves recognizing the content of ima-
ges, and expert systems, i.e., programs based on specialist know-
ledge that operate according to predefined rules. Not all aspects
of artificial intelligence require expert programming. One such
area is machine learning, which allows computers to learn inde-
pendently from collected data (Fig. 1). This enables systems to
predict outcomes in new, unfamiliar situations. Machine learning
is categorized into two main types: supervised and unsupervised
learning. In the former, algorithms learn from data that has been
appropriately labeled in advance. For example, images of eyes are
tagged as either glaucomatous or healthy, allowing the system to
learn which image features indicate the disease. In unsupervised
learning, the computer receives data without any labels and then
attempts to identify hidden patterns or groupings on its own. In
medicine, so-called deep convolutional neural networks (CNNs)
have also gained significant importance. These are advanced artifi-
cial intelligence algorithms that excel at analyzing images including
X-rays, MRI scans, or photographs of the retina. Their operation
resembles the way humans recognize visual information: first no-
ticing simple shapes and colors, then integrating these elements
to identify the overall image. CNNs function in a similar manner,
initially detecting basic components such as lines, edges, or co-
lors. It does this using so-called convolutional layers, which can be
compared to small windows sliding across the image and capturing
specific features. Then, in subsequent layers, the network analyzes
increasingly complex structures until it is ultimately able to reco-
gnize, for example, signs of disease in a retinal image or a tumor
in a CT scan. Additionally, the network uses the ReLU (Rectified
Linear Unit) activation function, which accelerates learning and
improves its efficiency, along with a pooling process that conden-
ses input data while preserving key features. Thanks to these me-
chanisms, the operation of the network becomes more efficient,
and the models themselves can recognize even very subtle chan-
ges in images — often with accuracy comparable to that of specia-
lists [7, 8]. An important aspect of Al is the phenomenon known
as the “black box”. This term refers to a situation where a neural
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Fig. 1.  Aificial Intelligence models.

network can provide an accurate answer, such as detecting the
presence of glaucoma, yet it is difficult to explain exactly how
the decision was reached. The decision-making process is based
on millions of calculations and interactions between an enormous
number of parameters, which are far too complex for a human to
trace step by step. In practice, this means that even the creators
of an algorithm often do not know exactly how the model arrived
at its decision. For example, a network may detect a tumor in an
image, but it remains unclear what specific features it identified
to reach that conclusion. This raises important questions about
safety and trust, especially in the field of medicine [9].

4. Arificial intelligence in glaucoma diagnostics

4.1 Intraocular pressure

Intraocular pressure (IOP) is the most important modifiable
risk factor for glaucoma. It can fluctuate significantly in patients
over both short and long periods of time. Elevated IOP, typical-
ly defined as exceeding 21 mmHg, warrants further diagnostic
evaluation for ocular hypertension or glaucoma [10]. To date, Al
has been applied to the analysis of data generated by Sensimed
Triggerfish (Sensimed AG, Lausanne, Switzerland) (Fig. 2). It is
a contact lens—based device that enables continuous monitoring of
IOP by measuring corneal deformation. Built-in strain gauges con-
tinuously record changes in corneal shape, transmitting the data
to an antenna attached to the patient’s orbit, which then relays
it to a recorder. Analysis of these data enables relative measure-
ments of IOP fluctuations, which may indicate the development
of open-angle glaucoma associated with chronically elevated IOP.
Martin et al. used data from 24 prospective studies utilizing Trig-
gerfish and applied machine learning to assess the usefulness of
this tool in monitoring diurnal IOP fluctuations and distinguishing
eyes with open-angle glaucoma from healthy eyes. Analysis sho-
wed that combining ambulatory IOP assessment with a 24-hour
profile of ocular shape changes recorded by contact lenses pro-
vides a better indicator for detecting open-angle glaucoma than
using either method alone. This finding suggests the potential use
of Triggerfish as a novel biomarker in glaucoma diagnostics [11].
However, several aspects of such devices still require further
development, including the rigidity and bulkiness of embedded
circuits, the inability to detect minor IOP fluctuations, and the
complexity involved in manufacturing these lenses [12].
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Fig. 2.  Sensimed Triggerfish consiruction and operation scheme.

4.2 Fundus examination

Ophthalmoscopy, or fundoscopy, allows assessment of the in-
ternal posterior part of the eye. This examination enables evalu-
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ation of the retina, optic disc, and retinal vessels. Characteristic
changes in these areas help in the diagnosis of various diseases,
including glaucoma. In the course of this disease, morphological
changes occur, including distinctive hollowing of the optic disc,
indicative of nerve tissue loss (glaucomatous cupping), glauco-
matous neuropathy, alterations in the RNFL, and peripapillary
atrophy. The cup-to-disc ratio (CDR) is also assessed based on
the ratio of the vertical cup diameter (VCD) to the vertical disc
diameter (VDD), expressed as a decimal fraction [13]. One me-
thod of fundus imaging involves color images captured by came-
ras [4]. The first publication investigating the application of Al
in this technique appeared in 1999, when Sinthanayothin et al.
reported successful anatomical localization of the optic disc, optic
cup, and retinal blood vessels. The study demonstrated that auto-
matic recognition of the optic disc, blood vessels, and the fovea
centralis can aid disease detection by analyzing changes in these
retinal areas [14]. Building on this, several authors later evaluated
the usefulness of Al-based analysis of color fundus photographs
for glaucoma detection. Some of these publications evaluated Al
models based on optic nerve head analysis, while others relied on
detecting features suspected of glaucomatous neuropathy, such as
a high vertical cup-to-disc ratio, retinal nerve fiber layer defects,
peripapillary atrophy, disc hemorrhages, and rim thinning [15].
Li et al. evaluated the effectiveness of a deep learning (DL) algori-
thm in detecting glaucomatous neuropathy based on color fundus
photographs. The study found that the DL model achieved very
high effectiveness in detecting glaucomatous neuropathy, reaching
a sensitivity of 95.6% and a specificity of 92%. It was observed
that the algorithm most often made errors in glaucoma detection
when other ocular conditions were present, such as pathological
myopia, or in cases of physiological cupping of the optic disc [16].
Bhuiyan et al. conducted a study with the aim of developing and
validating an Al-based CDR assessment system to support effec-
tive screening of individuals suspected of having glaucoma. Unfor-
tunately, the effectiveness of Al in detecting glaucoma was lower
than in the case of diabetic retinopathy, which was also examined
in the study. While the technology has the potential to improve
diagnostic accessibility and reduce unnecessary referrals, it still
requires further validation and integration with other diagnostic
methods. Once refined, the system may facilitate early glaucoma
detection and help mitigate the risk of vision loss — especially in
regions facing a shortage of ophthalmic specialists [17]. Additio-
nally, Al-Aswad et al. assessed the effectiveness of the Pegasus sys-
tem, an Al-based tool, for glaucoma screening using color fundus
photographs. The results of the assessments performed by profes-
sionals and Al were compared with the reference clinical diagno-
sis established before in the Singapore Malay Eye Study, which
served as the gold standard. The Pegasus system demonstrated
superior diagnostic performance compared to five of the six phy-
sicians involved in the study, achieving an accuracy comparable to
the gold standard. These findings suggest its potential utility in
screening for glaucomatous neuropathy. To validate its effective-
ness further, analyses on a larger patient cohort are planned [18].
In a related approach, Masumoto et al. employed a deep learning
algorithm that integrated both fundus image analysis and visual
field testing. This combination enabled more effective detection
of glaucomatous eyes. The comprehensive evaluation of multiple
parameters remains an active area of research in the application

of AL [19].
4.3 Visual field (VF)

Currently, one of the primary methods used to monitor visual
function during glaucoma progression is VF testing [1]. The most
common types of VF deficits in this condition result from locali-
zed damage to retinal nerve fibers and their spatial distribution.

Nasal fibers and the papillomacular bundle are typically spared
until the late stages of the disease, which is why eyes with advan-
ced glaucoma often retain a central or temporal island of vision.
Damage to the arcuate fibers is commonly observed, and the de-
ficits correspond to the anatomy of these fibers — most glaucoma-
tous VF defects do not cross the horizontal midline [20]. When
DL systems are trained on large VF datasets and their models are
optimized to improve the detectability of glaucomatous VF de-
fects, artificial intelligence algorithms become capable of predic-
ting, diagnosing, and monitoring the disease with high accuracy, at
low cost, and with increased efficiency [21]. Since 1994, numero-
us publications have confirmed the effectiveness of DL machines
trained on standard perimetric data from automated perimetry in
distinguishing glaucomatous VF patterns from normal ones and in
classifying the severity of glaucomatous VF loss [15]. Heijl et al.
conducted a study aimed at comparing the precision and certainty
of VF assessments made by physicians and those made by a con-
structed artificial neural network (ANN) in the context of glau-
coma diagnosis. Among physicians, the sensitivity in assessing VF
ranged from low to high values, and specificity also showed a wide
range. On average, the sensitivity was approximately 83%, and the
specificity reached 90%. The ANN demonstrated higher sensiti-
vity than the physicians while maintaining comparable specificity.
The study results indicate that the constructed neural network
may serve as an effective alternative to traditional, subjective VF
evaluation performed by specialists, and its integration with dia-
gnostic tools could improve the quality of patient care. The main
limitation of this study is the relatively small number of glaucoma
experts involved. Moreover, even though the ANN demonstrated
high accuracy in classifying VF test results, its interpretation sho-
uld not be regarded as a definitive diagnosis, as glaucoma identifi-
cation requires consideration of other clinical parameters such as
IOP risk factors, and observations of the optic disc. Consequently,
the final diagnosis should be made by a specialist based on a com-
prehensive analysis of these parameters [22]. In 2018, a smart-
phone application called iGlaucoma was developed, incorporating
a DL system trained to detect glaucomatous VF changes. It was
found to be a clinically effective tool for detecting glaucomatous
neuropathy, indicating promising potential for clinical application.
However, the study focused on a specific population and relied
solely on VF test results. Future analyses should integrate clinical
data, test outcomes, and structural images to enable more accura-
te glaucoma diagnosis [23].

4.4 Spectral Optical Coherence Tomography (SOCT)

SOCT is a non-invasive and safe diagnostic technique that has
become a standard in contemporary ophthalmic practice. Thanks
to the diverse scanning protocols available in SOCT, subtle struc-
tural changes caused by glaucoma can be detected even before
visual field defects appear [3]. However, the vast amount of data
generated by SOCT scans, combined with the need for highly pre-
cise image interpretation, may place a significant burden on phy-
sicians — potentially leading to diagnostic delays and inaccuracies
in conditions such as glaucoma. In response to these problems,
many recent studies have focused on developing artificial intelli-
gence algorithms to support the diagnosis of this condition [24].
Typical SOCT parameters used in glaucoma diagnostics inclu-
de three main areas: retinal nerve fiber layer (RNFL) thickness,
macular parameters — including macular cube scan, ganglion cell
complex (GCC) and ganglion cell layer with inner plexiform layer
(GC-IPL), as well as optic nerve head parameters such as Bruch’s
membrane opening and minimum rim width (BMO-MRW), and
optic nerve head (ONH) cube scan. Although RNFL thickness
is the most commonly used clinical parameter in SOCT, DL al-
gorithms rely on a combination of the mentioned parameters to
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enhance diagnostic accuracy. During the analysis of these para-
meters, BMO-MRW was identified as a potentially very good and
precise marker, offering comparable or even superior effectiveness
in detecting glaucoma compared to RNFL thickness [25]. Rese-
archers have also described a comprehensive deep learning (DL)
algorithm designed to quantitatively assess optic nerve damage
due to glaucoma, based on fundus imaging. This algorithm, trained
using SOCT data, was applied to estimate RNFL thickness based
on fundus images, with the aim of predicting neuroretinal damage,
and achieved promising results. It has even been demonstrated
that such DL algorithms perform better than human assessment in
distinguishing eyes with normal and abnormal VF test results [26].
The aim of the study conducted by Mariottoni et al. [27] in 2020
was to use a residual neural network, additionally developed on
their own dataset of unsegmented B-scans and RNFL thickness
measurements, to predict RNFL thickness from raw B-scans. The
results of the study showed that the developed DL algorithm was
able to identify features of B-scans relevant for predicting RNFL
thickness, without the need to rely on conventional segmentation
by spectral-domain OCT machines. The system developed by the
authors performed at a level comparable to conventional SOCT
software for high-quality images but outperformed it for lower-qu-
ality images. Based on the results obtained, it was established that
a DL algorithm operating without segmentation can provide reliable
estimates of RNFL thickness in both high- and lower-quality ima-
ges. Such an algorithm may be valuable in clinical practice by allo-
wing the assessment of RNFL thickness without segmentation, thus
eliminating the time-consuming process of verification and manual
correction of retinal layer boundaries [25]. Another area of growing
interest is the application of CNNs, which not only minimize the
need for manual image review but also enable accurate detection of
glaucoma in SOCT and fundus photographs. Glaucoma diagnostics
based on CNNGs leverages the capabilities of the algorithm in image
segmentation and classification, enabling segmentation of the optic
disc and its evaluation. It is also possible to identify additional fe-
atures on B-scans from spectral-domain OCT that are relevant for
diagnosing glaucoma or monitoring its progression. The aim of the
study conducted by Zafar et al. was to compare the performance
of CNN algorithms with traditional methods in detecting glauco-
ma, as well as to assess their ability to analyze and classify images.
The study demonstrated the superiority of CNN algorithms over
traditional methods, particularly in the context of image analysis
and classification, with performance equal to or exceeding that of
human experts. Zafar et al. highlighted the potential of CNNs to
leverage large datasets collected during imaging studies, which are
commonly used in ophthalmology. The study particularly highli-
ghted the usefulness of CNN algorithms in glaucoma diagnostics,
especially with respect to SOCT imaging [28].

5. Limitations and challenges in the use of artificial
intelligence for glaucoma diagnosis

The use of Al to identify individuals at risk of glaucoma may
help reduce the burden on medical staff, lower costs, and shor-
ten the duration of screening procedures. Nevertheless, Al is not
a self-sufficient solution, and several challenges persist — including
result interpretability, legal and ethical considerations, standardi-
zation, quality control, and regulatory requirements for its use as
a medical device. One notable obstacle in the clinical implemen-
tation of Al is the variability in image quality. Models are sensitive
to this and may perform less effectively when the data quality is
poor. The quality of imaging is influenced by a range of factors inc-
luding differences in equipment, lighting, and patient positioning,
which can disrupt the features used by the algorithm for classifica-
tion [29]. A separate issue is related to logistical challenges, which

can pose a significant barrier to the implementation of Al. Edu-
cation on the use of Al should be integrated into medical training
programs, and practicing clinicians will require additional instruc-
tion. In addition, employing qualified technical personnel to work
alongside physicians will be essential for facilitating the integration
of new systems [30]. However, it is important to recognize that
the behavior of Al may still be unpredictable, even when all safety
standards are followed and developers make every effort to miti-
gate risks. Despite the implementation of appropriate safeguards,
Al systems may exhibit behaviors that are difficult to predict due
to their complexity and the variability of the data on which they
base their decisions. Consequently, even with careful design, there
is a risk that artificial intelligence may behave in unforeseen ways,
creating challenges related to supervision and control [31].

6. Condlusions

Artificial intelligence holds great potential for glaucoma de-
tection by monitoring intraocular pressure and analyzing fundus
images, visual field tests, and optical coherence tomography. The
ability of Al models to process large volumes of data may support
earlier detection of glaucoma. One example of Al application in
early-stage glaucoma diagnosis is the use of contact lenses that
can continuously monitor intraocular pressure. Their use may
contribute to a faster diagnosis of the disease. Promising results
have also been reported in the application of artificial intelligence
to visual field testing and fundus photography, where Al demon-
strates high sensitivity and specificity in detecting glaucomatous
neuropathy. SOCT scans analyzed by deep learning algorithms
offer physicians highly precise diagnostic insights into this con-
dition. Despite its promise, Al also presents certain limitations
— artificial intelligence models are quite sensitive to the quality
of the analyzed images, which may lead to diagnostic errors when
low-quality data are used. Furthermore, adapting these models to
entirely new data outside the training set may prove challenging,
potentially limiting their clinical utility. Yet another obstacle is the
need for large and diverse datasets to implement these models
in clinical practice, which may be complicated by concerns over
privacy and data security. Successful integration of Al into routine
clinical practice also depends on providing adequate training for
medical personnel and ensuring access to professional technical
support. In summary, Al holds significant potential to improve
glaucoma diagnostics. However, further development is required,
particularly in areas such as adapting systems to variable clinical
conditions and ensuring sufficiently high-quality input data.
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