PL EN
REVIEW PAPER
Application of Artificial Intelligence in Glaucoma Diagnosis – a Literature Review
Marcin Siwik 1, A-D
,
 
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Department of Eye Diseases, Dr Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Poland Head: Professor Bartłomiej Kałużny, PhD, MD
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2025-04-14
 
 
Acceptance date: 2025-06-17
 
 
Publication date: 2026-01-15
 
 
Corresponding author
Marcin Siwik   

Klinika Chorób Oczu, Szpital Uniwersytecki nr 1 im. dr Antoniego Jurasza w Bydzgoszczy, Bydgoszcz, Poland
 
 
Ophthalmology 2025;28(3)
 
KEYWORDS
TOPICS
ABSTRACT
Glaucoma is a serious, chronic, and progressive eye disease that can lead to irreversible blindness. The early phase of the condition is particularly critical, as it often remains unnoticed by the patient. Glaucoma is a leading cause of vision loss worldwide, which underscores the importance of screening and continuous monitoring of disease progression. Traditional diagnostic methods include intraocular pressure measurement, gonioscopy, fundus examination, optical coherence tomography, and visual field testing. However, the subjective nature of result interpretation and the time-intensive character of procedures have prompted growing interest in artificial intelligence. In recent years, substantial advances in artificial intelligence applications have significantly improved workflow and efficiency across various medical domains. The implementation of artificial intelligence in glaucoma diagnostics may lead to considerable improvements in ophthalmology by enabling earlier detection of individuals at risk, reducing the number of patients who lose their vision, and decreasing the burden on physicians while improving the overall quality of patient care. This paper presents a review of literature published over the past decade, examining the foundations of operation of artificial intelligence, the effectiveness of algorithms in identifying glaucomatous changes, and their capacity to assess disease risk. The review includes an in-depth evaluation of the diagnostic potential and possible limitations of artificial intelligence in diagnosing glaucoma.
REFERENCES (32)
1.
Weinreb RN, Aung T, Medeiros FA: Patofizjologia i leczenie jaskry: przegląd. JAMA. 2014; 311(18): 1901–1911.
 
2.
Tham Y-C, Li X, Wong T-Y, et al.: Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040 A Systematic Review and Meta-Analysis. Ophthalmology. 2014; Vol. 121, Issue 11: 2081–2090.
 
3.
Schuster AK, Erb C, Hoffmann EM, et al.: The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int. 2020 Mar 27; 117(13): 225–234.
 
4.
Mary MCVS, Rajsingh EB, Naik GR: Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey. IEEE Access. 4. 4327– –4354.
 
5.
Coan LJ, Williams BM, Krishna Adithya V, et al.: Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Survey of Ophthalmology. 2023; 68.1: 17–41.
 
6.
Susanna R, de Moraes CG, Cioffi G, et al.: Why do people (still) go blind from glaucoma? Translational Vision Science & Technology. 2015; 4.2: 1.
 
7.
Gupta R, Srivastava D, Sahu M, et al.: Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021 Aug; 25(3): 1315–1360.
 
8.
Hamet P, Tremblay J: Artificial intelligence in medicine. Metabolism. 2017 Apr; 69S: S36–S40.
 
9.
Ting DSW, Pasquale LR, Peng L, et al.: Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019 Feb; 103(2): 167–175.
 
10.
Asrani SG, McGlumphy EJ, Al-Aswad LA, et al.: The relationship between intraocular pressure and glaucoma: An evolving concept. Prog Retin Eye Res. 2024 Nov; 103: 101303.
 
11.
Martin KR, Mansouri K, Weinreb RN, et al.: Use of Machine Learning on Contact Lens Sensor-Derived Parameters for the Diagnosis of Primary Open-angle Glaucoma. Am J Ophthalmol. 2018; 194: 46–53.
 
12.
Shean R, Yu N, Guntipally S, et al.: Advances and Challenges in Wearable Glaucoma Diagnostics and Therapeutics. Bioengineering (Basel). 2024 Jan 30; 11(2): 138.
 
13.
Bragança CP, Torres JM, Soares CPA, et al.: Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope. Healthcare (Basel). 2022 Nov 22; 10(12): 2345.
 
14.
Sinthanayothin C, Boyce JF, Cook HL, et al.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol. 1999 Aug; 83(8): 902–910.
 
15.
Al-Shawabkeh M, Al-Ryalat SA, Al-Bdour M, et al.: The utilization of artificial intelligence in glaucoma: diagnosis versus screening. Front Ophthalmol (Lausanne). 2024 Mar 6; 4: 1368081.
 
16.
Li Z, He Y, Keel S, et al.: Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018; 125(8): 1199–1206.
 
17.
Bhuiyan A, Govindaiah A, Smith R: An Artificial-Intelligence and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging. Journal of Ophthalmology. 2021, 6694784, 10 pages.
 
18.
Al-Aswad LA, Kapoor R, Chu CK, et al.: Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. J Glaucoma. Published online 2019 June 21.
 
19.
Masumoto H, Tabuchi H, Nakakura S, et al.: Deep-learning Classifier With an Ultrawide- field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity. J Glaucoma. 2018 Jul; 27(7): 647–652.
 
20.
Heijl A, Patella VM, Chong LX, et al.: A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study. Am J Ophthalmol. 2019 Feb; 198: 154–165.
 
21.
Zhang L, Tang L, Xia M, et al.: The application of artificial intelligence in glaucoma diagnosis and prediction. Front Cell Dev Biol. 2023 May 4; 11: 1173094.
 
22.
Andersson S, Heijl A, Bizios D, et al.: Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma. Acta Ophthalmol. 2013; 91(5): 413–417.
 
23.
Li F, Song D, Chen H, et al.: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. NPJ Digit Med. 2020 Sep 22; 3: 123.
 
24.
Chaurasia AK, Greatbatch CJ, Hewitt AW: Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice. J Glaucoma. 2022 May 1; 31(5): 285–299.
 
25.
Gutierrez A, Chen TC: Artificial intelligence in glaucoma: posterior segment optical coherence tomography. Curr Opin Ophthalmol. 2023 May 1; 34(3): 245–254.
 
26.
Mursch-Edlmayr AS, Ng WS, Diniz-Filho A, et al.: Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Transl Vis Sci Technol. 2020 Oct 15; 9(2): 55.
 
27.
Mariottoni EB, Jammal AA, Urata CN, et al.: Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach. Sci Rep. 2020 Jan 15; 10(1): 402.
 
28.
Zafar A, Aamir M, Nawi NM, et al.: A comprehensive convolutional neural network survey to detect glaucoma disease. Mob Inf Syst. 2022; 2022: 1–10.
 
29.
Al-Ryalat SA, Singh P, Kalpathy-Cramer J, et al.: Artificial Intelligence and Glaucoma: Going Back to Basics. Clin Ophthalmol. 2023 May 31; 17: 1525–1530.
 
30.
Li F, Wang D, Yang Z, et al.: The AI revolution in glaucoma: Bridging challenges with opportunities. Progress in Retinal and Eye Research. 2024; Vol. 103, 101291, ISSN 1350-9462.
 
31.
Keskinbora K, Güven F: Artificial Intelligence and Ophthalmology. Turk J Ophthalmol. 2020 Mar 5; 50(1): 37–43.
 
32.
Zaleska-Żmijewska A, Szaflik JP, Borowiecki P, Szaflik J: A new platform designed for glaucoma screening: identifying the risk of glaucomatous optic neuropathy using fundus photography with deep learning architecture together with intraocular pressure measurements. Klin Oczna. 2020; 122, 1: 1–6.
 
eISSN:1689-362X
ISSN:1505-2753
Journals System - logo
Scroll to top